Towards ultracold RbSr ground-state molecules
Quantum many-body physics

Strong quantum correlations render description difficult.

Especially difficult:

Fermionic systems

Frustrated systems

Dynamics

\[\langle \hat{O} \rangle \]
Quantum simulation (and beyond)

Difficult to study quantum system

Simplified model

Well-controlled ultracold system

Control everything

Potential

Interactions

Internal state
New ultracold systems

Alkaline-earth(-like) elements
Yb, Sr, Ca

Magnetic atoms
Cr, Dy, Er

Rydberg atoms

Ground-state molecules
closed-shell: KRb, NaK, RbCs,...
open-shell: RbYb, RbSr, YbCs

Benefits

- More internal structure
- More interesting interactions
 - long-range
 - anisotropic

- More interesting interactions
Molecules

Richer structure than atoms
rotational and vibrational states

Dipole-dipole interactions
due to electric dipole moment
Example: quantum magnetism

Magnetism requires spin dependent interactions.

Provided by super-exchange in ultracold ground-state atoms

\[t \quad U \quad t \]

spin dependent interaction

Requires extremely low motional temperature

In dipolar molecules simply provided by spin-state dependent dipole interaction

Theory:
Micheli et al., nature physics 2, 341 (2006)
Gorshkov et al., PR A, 84, 033619 (2011)

Requires only low spin temperature
Examples: dipolar gases in 2D

Bosonic molecules

Monte-Carlo density distributions in dependence of interaction strength

- (a) $N=13$, $\tau=1$
- (b) $N=13$, $\tau=2.5$
- (c) $N=13$, $\tau=5$
- (d) $N=13$, $\tau=20$

G. Pupillo et al., PRL 104, 223002 (2010)

Fermionic molecules

Interlayer Cooper pairing

Pikovski, A. et al., PRL 105, 215302 (2010)

Reviews

Two paths to ultracold molecules

Path 1
- Hot atoms associate to form cold molecules

Path 2
- Cold atoms associate to form hot molecules
Status

Four systems, all based on alkali atoms:

- KRb 0.5 Debye dipole moment Science 322, 231 (2008) Ye, Jin group
- Cs$_2$ 0 Debye Faraday Disc., 284 (2009) Nägerl group
- NaK 2.7 Debye PRL 114, 205302 (2015) Zwierlein group

Other alkali-alkali molecule experiments being set up by many groups.

First experiments studying magnetism:

Observation of dipolar spin-exchange interactions with lattice-confined polar molecules

Many-body dynamics of dipolar molecules in an optical lattice

PRL 113, 195302 (2014)

Challenge

Cooling to quantum degeneracy
Evaporative cooling
Challenge for evaporative cooling

Chemistry

\[\text{KRb} + \text{KRb} \rightarrow \text{K}_2 + \text{Rb}_2 + \text{energy} \]
Counter measures

Non-reactive species
e.g. RbCs, NaK,...

Dangerous „sticky collisions“?
Bohn group, PR A 87, 012709 (2013)

Repulsive molecules in 1D lattice

Zoller group, PRL 98, 060404 (2007)
Bohn group, PR A 81, 060701(R) (2010)

Repulsive van der Waals interactions

Bohn group, PR A 73, 022707 (2006)
Gorshkov et al. PRL 101, 073201 (2008)

—> might allow evaporative cooling to quantum gas
RbSr ground-state molecules

So far
alkali + alkali atom

Our goal
alkali + alkaline earth atom

- only paired electrons
- unpaired electron

Our group RbSr
Görlitz group RbYb
Gupta, Takahashi groups LiYb
Cornish group CsYb
Repulsive van der Waals interactions

instantaneous dipole – induced dipole interaction

\[V_{\text{vdW}}(r) = \sum_n \frac{|\langle m | V_{\text{dd}}(r) | n \rangle|^2}{E_m - E_n} \equiv \frac{C_6}{r^6} \]

Can be repulsive in excited state: \(E_m - E_n > 0 \)

→ evaporative cooling of OH at mK temperatures, Ye group, Nature 492, 396 (2012)
Repulsive van der Waals interactions

RbSr energy, neglecting hyperfine structure

E = 150 V/cm

magnetic field

383 G

N=0

N=1

repulsive vdW interaction!
Repulsive van der Waals interactions

preliminary result by John Bohn, JILA, neglecting hyperfine interaction

$RbSr$ interaction potential

$E = 150 \text{ V/cm} \quad B = 383 \text{ G}$

Evaporative cooling possible?

$\frac{C_6}{r^6} > 0$

expected temperature of molecular gas
Rb-Sr mixtures

\[^{87}\text{Rb} \quad N = 1.3 \times 10^5 \]
\[^{84}\text{Sr} \quad N = 2.3 \times 10^5 \]
Molecule association

Standard technique
- magneto association
- Sr is non-magnetic \rightarrow magneto association not trivial

 Hutson group, PRL **105**, 153201 (2010)

Alternative technique
- STIRAP association

 \rightarrow let's demonstrate it by creating Sr$_2$
Scheme

BEC

ramp on optical lattice

Mott insulator

associate molecules
Molecule association by STIRAP

\begin{align*}
|e> & \quad \Omega_2 \\
\Gamma & \quad \Omega_1 \\
|m> & \quad |a> \\
{^1S_0} + {^3P_1} & \quad {^1S_0} + {^1S_0}
\end{align*}

external trap (lattice well)
Molecule association by STIRAP

\[|e> \quad \Gamma \quad 1S_0 + 3P_1 \]

\[|m> \quad \Omega_2 \quad 1S_0 + 1S_0 \]

external trap (lattice well)
Molecule association by STIRAP

\[|e> \quad {^1S_0 + ^3P_1} \quad |a> \quad {^1S_0 + ^1S_0} \]

\[\Omega_1 \quad \Gamma \quad \text{external trap (lattice well)} \]
Molecule association by STIRAP

\[|\Psi\rangle = \Omega_1 |m\rangle + \Omega_2 |a\rangle \]

\[^1S_0 + ^3P_1 \]

\[^1S_0 + ^1S_0 \]

external trap
(lattice well)
Molecule association by STIRAP

$|e\rangle$ $|a\rangle$ $|m\rangle$

Ω_2 Ω_1 Γ

$^1S_0 + ^3P_1$

$^1S_0 + ^1S_0$

external trap (lattice well)
STIRAP transition

Singlet states

\[^1S_0 \]

\[^1P_1 \]

Triplet states

\[^3P_J \]

461 nm
30 MHz

671 nm
mHz

689 nm
7.4 kHz

698 nm
mHz
STIRAP transition

singlet states triplet states

$^{1}\text{P}_1$

$^{3}\text{P}_J$

$^1\text{S}_0$

689 nm
7.4 kHz
See also $^{88}\text{Sr}_2$ work by Tanya Zelevinsky, PRL 109, 115303 (2012).
Result

30% conversion efficiency
60µs lifetime

What are the limitations?
Can we improve performance?

See also 88Sr$_2$ work by Tanya Zelevinsky, PRL 109, 115303 (2012).
Short lifetime of molecules

Sr$_2$ molecular potentials

A. Stein et al., Eur. Phys. J. D 64, 227 (2011)

532 nm (Verdi) used in Innsbruck

1064 nm

Energy [cm$^{-1}$] vs. R [Å]
Lifetime in 1064 nm lattice

110(25) s lifetime

STIRAP efficiency: 55%
Lightshift on binding energy

\[|e> \]

\[L_1 \]

\[228 \text{ MHz} \]

\[75 \text{ MHz} \]

\[1S_0 + 3P_1 \]

\[1S_0 + 1S_0 \]

\[|m> \]

\[|a> \]

\[\Omega_1 = 2\pi \times 45 \text{ kHz} \]

\[-18.3 \frac{\text{kHz}}{\text{W/cm}^2} \]

Graph: Binding energy - 644.825 MHz (kHz)
Compensating binding energy shift

\[|e\rangle \quad 228 \text{ MHz} \quad 75 \text{ MHz} \quad |a\rangle \quad \text{compensation beam} \]

\[^1S_0 + ^3P_1 \]

\[^1S_0 + ^1S_0 \]

\[\text{compensation beam intensity / } L_1 \text{ intensity (\%)} \]

\[\text{Binding energy shift (kHz)} \]
STIRAP with compensation

~50% single pass efficiency

80% single pass efficiency

Sr atom number (10^4)

Time (ms)

Intensity (abr)

Time (ms)
STIRAP with compensation

80% single pass STIRAP efficiency

efficiency increase by compensation beam
Why initially lower efficiency?

- ~50% single pass efficiency
- 80% single pass efficiency
STIRAP parameter dependence

atom number after STIRAP round-trip

![Graphs showing the dependence of Sr atom number on δ and Δ](image)

- δ (kHz) vs. Sr atom number (10^4) with error bars
- Δ (MHz) vs. Sr atom number (10^4) with error bars

Energy level diagram:

$|m\rangle \rightarrow |a\rangle \rightarrow |e\rangle$ with control parameters δ and Δ.
What limits STIRAP efficiency?

1) off-resonant scattering of photons on atomic line

2) dark state lifetime of 3.5 ms
Next goal

^{87}Rb ^{84}Sr

Sr_2 molecules

RbSr molecules
Rb-Sr mixture

87Rb $N = 1.3 \times 10^5$

84Sr $N = 2.3 \times 10^5$
RbSr molecular potentials

Zuchowski et al., PR A 90, 012507 (2014)
RbSr molecular potentials

Zuchowski et al., PR A 90, 012507 (2014)
Photoassociation spectroscopy

88Sr-87Rb 84Sr-87Rb
Photoassociation spectroscopy

Observations

- Transition linewidth increases from 20kHz to 400kHz with increasing binding energy
- $^{84}\text{Sr}^{87}\text{Rb}$ Rabi frequencies $\sim 10x$ lower than Sr_2 or $^{88}\text{Sr}^{87}\text{Rb}$ Rabi frequencies at given intensity

Observation

Rb hyperfine splitting decreases by 3 MHz for 2 GHz binding energy of F=2 state
To fit data, ground-state molecular potential needs to be 10% lower than predicted.

Scattering lengths obtained from fit (preliminary)

<table>
<thead>
<tr>
<th></th>
<th>(^{84}\text{Sr})</th>
<th>(^{86}\text{Sr})</th>
<th>(^{87}\text{Sr})</th>
<th>(^{88}\text{Sr})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{85}\text{Rb})</td>
<td>300 (a_0)</td>
<td>90 (a_0)</td>
<td>50 (a_0)</td>
<td>-10 (a_0)</td>
</tr>
<tr>
<td>(^{87}\text{Rb})</td>
<td>90 (a_0)</td>
<td>-15 (a_0)</td>
<td>-400 (a_0)</td>
<td>275 (a_0)</td>
</tr>
<tr>
<td>(\text{Sr intraspecies})</td>
<td>122 (a_0)</td>
<td>800 (a_0)</td>
<td>96 (a_0)</td>
<td>-2 (a_0)</td>
</tr>
</tbody>
</table>

Simplest mixtures to work with

- \(^{84}\text{Sr}-^{87}\text{Rb}\): Bose - Bose
- \(^{87}\text{Sr}-^{87}\text{Rb}\): Fermi - Bose
1-color PA: thermal cloud vs. BEC

Rb atom number (10^4)

Detuning (MHz)

thermal clouds
Spatial overlap

Phase-separation if \(g_{12} > \sqrt{g_{11} g_{22}} \); \(g = \frac{4\pi\hbar^2}{m} a \)

low interspecies scattering length

\[\text{density} \]
\[\text{position} \]

large interspecies scattering length

\[\text{density} \]
\[\text{position} \]

interspecies scattering length

\(^{87}\text{Rb} - ^{84}\text{Sr}: 90 \ a_0 \)

intraspecies scattering lengths

\(^{87}\text{Rb}: 105 \ a_0 \), \(^{84}\text{Sr}: 124 \ a_0 \)

\rightarrow \text{no phase separation expected}
Spatial overlap

We use 1064 nm dipole trap: 3x deeper for Rb than for Sr

- gravitational sagging
- weaker trap for Sr
Bi-chromatic dipole trap

Balance trap by 532nm dipole trap
(attractive for Sr, repulsive for Rb)
PA with trap compensation

- Thermal clouds
- BECs, different potentials
- BECs, similar potentials
$^{87}\text{Rb}-^{84}\text{Sr}$ Mott insulator
PA of double Mott insulator

- 20,000 sites with atoms of each species
STIRAP attempts with 87Rb-84Sr

All attempts failed because of weak free-bound transition

Why is this transition so weak?
Free-bound transition strength

Predictions from ab-initio model fitted to data

<table>
<thead>
<tr>
<th></th>
<th>Excited state binding energy (MHz)</th>
<th>Franck-Condon factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{84}\text{Sr} - ^{87}\text{Rb}$</td>
<td>174</td>
<td>7×10^{-4}</td>
</tr>
<tr>
<td>$^{88}\text{Sr} - ^{87}\text{Rb}$</td>
<td>273</td>
<td>4×10^{-3}</td>
</tr>
<tr>
<td>$^{87}\text{Sr} - ^{87}\text{Rb}$</td>
<td>115</td>
<td>3×10^{-2}</td>
</tr>
</tbody>
</table>

Try with $^{87}\text{Sr} - ^{87}\text{Rb}$!

40 times higher Rabi frequency!
Towards the RbSr ground state

\[2S_{1/2} + 3P_{1} \]

\[2S_{1/2} + \, ^1S_{0} \]

\(~500 \text{ \textit{a}_0 \text{ radius}~}\)

\(~50 \text{ \textit{a}_0 \text{ radius}~}\)

\(30 \text{ \textit{THz} binding energy} \)

\(~9 \text{ \textit{a}_0 \text{ radius}~}\)

\(~\text{few 100 MHz binding energy}~\)
Spectroscopy of "hot" RbSr
Spectroscopy of "hot" RbSr

absorption [arb. units]

simulation

experiment

E [cm⁻¹]
Current projects

- RbSr molecules
- Li-Sr quantum gas microscope
- Perpetual atom laser
- K quantum gases
The team

Alex Bayerle (PhD)
Florian Schreck (PI)
Chun-Chia Chen (PhD)
Alessio Ciamei (PhD)
Shayne Bennetts (PhD)
Georgios Siviloglou (Marie Curie fellow)
Sergey Pyatchenkov (PhD)
Benjamin Pasquiou (Veni PI)
Alex Bayerle (PhD)
Denis Kurlov (PhD)
Vincent Barbé (PhD)
Florian Schreck (PI)
Alessio Ciamei (PhD)
Chun-Chia Chen (PhD)

Funding

European Research Council
VENI & VICI
MARIE CURIE